
AFWL-TR-89-01 AFWL-TR-89-01

A MODEL OF PARALLEL PERFORMANCE

E. A. Carmona
M. D. Rice

"April 1989

N

J,• Final Report

Approved for public release; distribution unlimited.

DTIC

N1 AY 1 G 1989

AIR FORCE WEAPONS LABORATORY 0
Air Force Systems Command
Kirtland Air Force Base, NM 87117-6008

mat,

AFWL-TR-89-01

This final report was prepared by the Air Force Weapons Laboratory,
Kirtland Air Force Base, New Mexico under Job Order 2304Y101. Lt Col
Carl E. Oliver (CA) was the Laboratory Project Officer-in-Charge.

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related procure-
ment, the United States Government incurs no responsibility or any obligation
whatsoever. The fact that-the Government may have formulated or in any way
supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights
or permission to manufacture, use, or sell any patented invention that may in
any way be related thereto.

This report has been authored by employees of the United States
Government. Accordingly, the United States Government retains a nonexclusive,
royalty-free license to publish or otherwise reproduce the material contained
herein, or allow others to do so, for United States Government purposes.

This report has been reviewed by the Public Affairs Office and is
releasable to the National Technical Information Service (NTIS). At NTIS,
it will be available to the general public, including foreign nations.

If your address has changed, if you wish to be removed from our mailing
list, or if your organization no longer employs the addressee, please notify
AFWL/SCP, Kirtland AFB, NM 87117-6008 to help us maintain a current mailing
list.

This technical report has been reviewed and is approved for publication.

Captain, USAF
Computer Research Scientist

FOR THE COMMANDER

NAZAREO L. RAPAGNANI hvhD
Chief, Communications-Computer
Systems Technology Office

DO NOT RETURN COPIES OF THIS REPORT UNLESS CONTRACTUAL OBLIGATIONS OR NOTICE
ON A SPECIFIC DOCUMENT REQUIRES THAT IT BE RETURNED.

UNCLASSIFIED
SECURITY i:LASSIFICATION OF -HIS

3
ACE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSiFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSiFICA'ION AUTHORITY 3. DISTRIBUTIONi AVAILABILITY OF REPORT

2b. DECLASSiFCATION iDOWNGRADING SCHEDULE Approved for public release; distribution
unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFWL-TR-89-01

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

Air Force Weapons Laboratory I SCP
6c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)

Kirtland Air Force Base, NM 87117-6008
8a. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYM80L 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

8c. ADDRESS (City, State, ind ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSiON NO

61102F 2304 Y1 01
11 TITLE (Include Security Classification)

A MODEL OF PARALLEL PERFORMANCE

12. PERSONAL AUTHOR(S)

Carmona, Edward A., Capt, USAF; and Rice, Michael D.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final I FROM Jul 88 TO Dec 8_8 1989 April 50
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP -Parallel processing Parallel computing
12 05 Parallel performance Amdahl's LawParallel performance models

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

>This report introduces a general model of parallel performance. With the goal of developing
conceptual and empirical methods for characterizing and understanding parallel algorithms,
new definitions of speedup and efficiency have been formulated. These definitions take into
account the effects that problem size and the number of processors have on efficiency and
speedup, and provide a natural and quantifiable measure of parallel performance. The terms
introduced in the definitions provide new and improved interpretations of the "serial" and
"parallel" fraction parameters commonly used in the literature (i.e., Amdahl's Law) to
explain the behavior of parallel algorithms. The model provides a more complete characteri-
zation of parallel algorithm behavior and is used to correct apparent deficiencies in the
formulation of speedup as expressed by Amdahl's Law.

Chapter 2 of this report reviews the basic definitions of speedup and efficiency and intro-
duces new definitions of these quantities in terms of work units and presents two (over),

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

1UNCLASSIFIEDIUNLIMITEO 0 SAME AS RPT 0 oTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

EDWARD A CARMONA, Capt, USAF (505) 844-4810 SCP

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete. UNCLASS IF I ED

i

UNCLASSIFIED
ZJCuayVw CgLASSIICAS0 Of ?NIS PAGE

19. ABSTRACT (Continued)

illustrative examples. Chapter 3 discusses two models of parallel performance which appear
in the parallel computing literature. The two formulations of speedup and efficiency are
based on the notion of "serial" and "parallel" fractions and present an apparent dichotomy
which must be resolved. Then, the "serial" and "parallel" fractions are expressed in terms
of the new work quantities introduced in Chapter 2, providing a natural interpretation of
the serial and parallel fractions of a task. The resulting equations are used to reconcile
the (apparent) dichotomy between Amdahl's Law and the more recent formulation of speedup.•
Derivation of several fundamental laws involving the relationships between *the serial and,
parallel fractions of a task are given and numerical evidence regarding the behavior oftthe
serial and parallel fractions as the problem and ensemble size vary are presented. /T1{se
observations are incorporated into an idealized and a general model of parallel peIrformance.

vC

4

Accession For

NTIS GP , A
DTIC TA" -

A~ v:cj- ancx o
By~ -- -----

AwmiiibiU'Y Ccies

D1st Sipla1

1 1,,

UNCLASSIFIED
i i I .IC ?IM ' Ci . UAi•s ICA? @of OF two$ PAGE

AFWL-TR-89-01

Summary

This report introduces a general model of parallel performance. With the goal of developing

conceptual and empirical methods for characterizing and understanding parallel algorithms,

new definitions of speedup and efficiency have been formulated. These definitions take

into account the effects that problem size and the number of processors have on efficiency

and speedup, and provide a natural and quantifiable measure of parallel performance. The

terms introduced in the definitions provide new and improved interpretations of the "serial"

and "parallel" fraction parameters commonly used in the literature (i.e., Amdahl's Law) to

explain the behavior of parallel algorithms. The model provides a more complete charac-

terization of parallel algorithm behavior and is used to correct apparent deficiencies in the

formulation of speedup as expressed by Amdahl's law.

iii

AFWL-TR-89-01

Preface

We would like to thank Dr. D. Davenport from Sandia National Laboratories, Albuquerque,

NM, for useful discussions and his contribution in reconfirming our interpretation of the

fundamental parameters. We would also like to thank Dr. N. L. Rapagnani and Lt Col C.

E. Oliver from the Air Force Weapons Laboratory, Kirtland AFB, NM, for their support in

this effort. This work was supported by the Air Force Office of Scientific Research grant

2304Y101.

iv

AFWL-TR-89-01

Contents

Section Page

Summary

Preface iv

Contents v

Figures vii

Tables viii

1. Introduction 1

2. Background 3

2.1 Measures of Performance 3

2.2 Alternate Definition of Speedup and Efficiency 4

2.2.1 Case Study 1 6

2.2.2 Case Study 2 7

3. Models of Parallel Performance 14

3.1 Two Views of Speedup 14

3.2 Basic Laws .. 18

3.3 Dynamics of s, p, d and p' 20

3.4 An Idealized Model of Parallel Performance 22

3.5 General Model of Parallel Performance 2.5

AFWL-TR-89-01

Contents (Continued)

Section Pg

4. Conclusions 32

4.1 Future Research .. 33

References .. 34

Appendix A. Dynamics of Fundamental Parameters 35

vi

AFWL-TR-89-01

Figures

Figure Page
1. Task dependency and scheduling charts for Example 1 6

2. Cholesky data dependency chart 8

3. Scheduling chart for Cholesky factorization of 7X7 matrix 10

4. Graphs of simulated wasted work and simulated/estimated speedups12

5. Constant speedup and efficiency curves 13

6. Speedup given by Amdahl's Law and by Sandia's reformulation 1.5

7. Box diagram of Amdahl's serial and parallel fractions 17

8. Realistic distribution of serial and parallel fractions iS

9. Serial Fraction, s, as a Function of n

10. Relationship between s and d; nP = 10 27

11. Boxed representations of parallel tasks 29

12. Level curves for S, E, s, and s' 30

vii

AFWL-TR-89-01

Tables

Table Page

1. Speedup and efficiency for Example 1 7

2. Speedup and efficiency for Example 2 9

3. Dynamics of fundamental parameters - Example 1 21

4. Dynamics of fundamental parameters - Example 2 21

A.1. Speedup, s, .-9 - Example I 36

A.2. Speedup, s, s' - Example 2 37

A.3. Speedup, s, s' - Example 3 38

A.4. Speedup, s, s' - Example 4 39

A.5. Speedup, s, .s - Example 5 40

viii

AFWL-TR-89-01

1. Introduction

The field of parallel computing will become an established discipline when cost-effective

high-performance parallel algorithms can be routinely implemented based on natural par-

allel programming models. An important issue to be resolved in the field is how to effec-

tively analyze the performance of parallel algorithms. With the goal of developing analytical

methods for characterizing and understanding parallel algorithm implementations, this re-

port proposes new definitions of speedup and efficiency. These definitions provide a more

natural, quantifiable, and multifaceted measure of the performance of parallel algorithms

than current models such as Amdahl's law (Ref. 1) offer. In addition, the new parameters

introduced in our definitions of speedup and efficiency provide new and improved interpre-

tations of the "serial" and "parallel" fraction quantities frequently used in the literature to

explain the behavior of parallel algorithms. These definitions take into account the effects

that both the problem size and the number of processors have on efficiency and speedup and

allow us to formulate and prove a number of basic laws which form the basis of this model.

The model provides the foundation for future theoretical and empirical studies which will

contribute to a deeper understanding of parallel algorithms.

Chapter 2 of this report reviews the basic definitions of speedup and efficiency and intro-

duces new definitions of these quantities in terms of work units and presents two illustrative

examples. Chapter 3 discusses two models of parallel performance which appear in the par-

allel computing literature. The two formulations of speedup and efficiency are based on the

notion of "serial" and "parallel" fractions and present an apparent dichotomy which must

be resolved. Then, the "serial" and "parallel" fractions are expressed in terms of the new

work quantities introduced in Chapter 2, providing a natural interpretation of the serial and

parallel fractions of a task. The resulting equations are used to reconcile the (apparent)

dichotomy between Amdahl's law and the more recent formulation of speedup proposed in

Ref. 2. Derivation of several fundamental laws involving the relationships between the serial

1

AFWL-TR-89-01

and parallel fractions of a task are given and numerical evidence regarding the behavior of

the serial and parallel fractions as the problem and ensemble size vary are presented. These

observations are incorporated into an idealized and a general model of parallel performance.

Finally, Chapter 4 discusses conclusions and directions for future work.

2

AFWL-TR-89-01

2. Background

2.1 Measures of Performance

Speedup has been advocated as the primary measure of parallel algorithm performance.

Intuitively, the speedup, S, is defined as the relative increase in speed over the serial com-

putation as processing elements are added to the parallel computation of a given work load.

Formally, this can be stated as

S) T(1)
T(np)

where T(np) is the time expended performing a task using ri processors. Since parallel

implementations may introduce computations which are unnecessary with respect to serial

implementations, T(1) is the time required to execute the task on a single processor using

the "best" serial implementation. Clearly, the time required to execute a task depends on

the number of operations that need to be performed, which, in turn, is a function of the

problem size. Therefore, a more complete formulation of speedup needs to take into account

the size of the problem. An alternate formulation of speedup is

S(n, np)= T(n, 1)
T(n, np) (2)

where n denotes the problem size (this view is also formulated in Ref. 3). Ideally, one

expects S to equal np; that is, as processing elements are added, speedup should increase

at the same rate. However, this is seldom the case because of overhead introduced by the

parallel implementation (Ref. 4). Therefore, efficiency is often used to measure the optimality

of the speedup. Efficiency is expressed as

E _ -- (3)
np

3

AFWL-TR-89-01

Because efficiency normalizes on the number of processors used, it is a more intrinsic measure

of an implementation's parallel performance than speedup. A more important statistic than

speedup, perhaps, is the cost of attaining a given speedup which is measured by the efficiency

of the implementation. The continued reliance on speedup as the primary measure of parallel

performance may be attributed to the unit of measurement that has been adopted: execution

time. Using time as a measure of work has several drawbacks. First, it varies with the

computer used. Second, it is simply a statistic which does not provide any particular insight

about the algorithm. We need to describe the efficiency of a parallel implementation in terms

of a measure of work that is quantifiable and useful for interpretations of the observable

behavior of the implementation.

2.2 Alternate Definition of Speedup and Efficiency

An alternative measure of performance is provided by computational counts or unit counts

based on the size of an indivisible task. This same measure of work has been used to compare

serial implementations of an algorithm with order, growth rate, and complexity analysis

functions such as E, 11, and Big 0. In these terms, the efficiency of a parallel algorithm can

be defined as

E=wa (4)
we

where wa is the work accomplished, we is the work expended, and ww = we - wa is the

work wasted. For a given implementation, the work wasted accounts for the time expended

in the following activities:

"* Waiting for other tasks to complete work

"* Communication delays and/or memory contentions associated with a particular com-

puter architecture and an implementation's communication load

"* Operation redundancies introduced by the particular parallel .implementation, includ-

ing task activation/termination overhead

4

AFWL-TR-89-01

Work accomplished, wa, is a function of the problem size but is independent of the number of

processors used since it refers to the amount of work that a single processor would accomplish.

In terms of units of measurement, wa equals the number of operations performed by the

"best" serial implementation of the algorithm. On the other hand, work wasted is a function

of program size and the number of processors used since, for example, problem size affects the

number of redundant operations introduced, and ensemble size affects the waiting behavior

of the implementation. Therefore, Eq. 4 can be restated as

E = wa(n)
E = ww(n,n,) + wa(n)(

and speedup can be defined in terms of efficiency as

wa(n)
S = E* nP = w a(n) * nP (6)

ww(n, np) + wa(n)

A similar formulation is introduced in Ref. 4 where efficiency is defined as a function of j,

the ratio between communication and computation loads. In fact, Eq. 5 can be rewritten in

the form:

1E = 1(7)
(ww/wa) + 1

which looks very much like the formulation in Ref. 4 with f• = ww/wa. The difference,

however, is of practical concern, since the formulation in Ref. 4 only considers time wasted

due to message delays, while the new definitions take into account the effects of load balance,

task overhead, and operation redundancies. These formulations of efficiency and speedup

parameterize algorithms and clearly demonstrate the effect of the individual work parameters

on the overall value of the quantities. As such, the formulations may be better suited for

comparative studies of parallel implementations.

5

AFWL-TR-89-01

a c e

b d f

kg

(a) Twk dependency graph.

S=n,-. : T(1)-9; $=I; Z=il
I I I I I I I I I

S I I I I I I I I I I
a lb hl ff i1

n, 2 Tcrd !,! t! T(2) 6; S-9/6; E 3/4;

np 3 c d I Iff T.T1 I T T T(3) 4; S=9/4;

I I I I I
I I I I I

n,,= 4 le f T(4) == 4; S -- 9/4; E 9/16;

T T ?

(b) ScIIdu i chart.

Figure 1. Task dependency and scheduling charts for Example 1.

To show the applicability of these new definitions, two examples are presented. The first

example is a simple artificial problem used to introduce some general concepts. The second

example is based on a parallel implementation of a Cholesky matrix factorization algorithm.

2.2.1 Cae Study I

Figure la shows a directed acyclic graph which represents a possible computational task.

Nodes in the graph represent indivisible tasks, and the arcs represent task dependencies. For

example, task b cannot start until task a is accomplished. Figure lb shows the scheduling

of independent tasks on 1, 2, 3, and 4 processors. For simplicity, each task is assumed to

accomplish the same amount of work and no time is wasted due to communication delays or

operation redundancies.

The multitasked implementations indicate portions of wasted effort, ww, due to task depen-

dencies as unlabeled segments. The speedup and efficiency of each implementation (shown

6

AFWL-TR-89-01

Table 1. Speedup and efficiency for Example I.

n. ww wa we E = wa/we S = Eno

1 0 9 9 1 1
2 3 9 12 3/4 3/2
3 3 9 12 3/4 9/4
4 7 9 16 9/16 9/4
5 11 9 20 9/20 9/4

on the right of each graph) are computed using the conventional Eqs. 1 and 3. Table 1 shows

speedup and efficiency computed using the new definitions as expressed by Eqs. 5 and 6. As

can be seen, the speedup and efficiency computed by the different definitions coincide.

Note that a maximum speedup of 9/4 is reached with three processors and that adding

processors only increases the work wasted which simply decreases the efficiency. Also, note

that the maximum speedup of 9/4 equates to the reciprocal of the ratio of the length of

the longest dependency chain in the dependency graph (4) to the total number of tasks (9).

Chapter 3 shows that this ratio represents the speedup bound predicted by Amdahl's law.

2.2.2 Case Study 2

A common algorithm applied to structural analysis, hydrodynamics, and least square prob-

lems is the Cholesky factorization of an rhh order square matrix. The general solution of

the Cholesky factorization is a specialized form of the more common Gaussian elimination

algorithm (see Ref. 5). The Cholesky method takes advantage of symmetry properties of the

matrix to reduce the complexity of factorization from an O(4n3 /3) problem as solved by the

Gaussian elimination method (Ref. 6) to an O(n?/3) problem (Ref. 7). Depending on how

the looping variables are arranged, there are six different implementations of this algorithm

(Ref. 8). However, the following discussion concentrates on the ijk form of Cholesky.

The algorithm is designed for a shared memory architecture and relies on a dynamic schedul-

ing scheme to assign rows of the matrix to available processors. That is, when a processor

7

AFWL-TR-89-01

Th

T21 T31 T41 T51 T61 T71

T32 T52 T62 T72

T43 T 3 T63 T73

T4JJý
T64 TI4 T74

T56J

T65 T75

T6J
I

T77

Figure 2. Cholesky data dependency chart.

becomes available, the next row to be computed is assigned to that processor. The order in

which rows are assigned to processors is contingent on (1) the data dependencies associated

with the algorithm, and (2) the manner in which the algorithm is implemented.

The data dependencies for a 7 x 7 matrix are shown in Fig. 2. Each node W'j represents the

ijtk element of the resultant matrix. These data dependencies are inherent in the algorithm.

The synchronization scheme adopted by a given implementation must ensure that these

inherent dependencies are preserved.

The ijk form of Cholesky solves the system of equations row-wise. Observe that, in order

to factor the ith row, the previous i - 1 rows are required. More specifically, to compute

the jth element of any row, the elements of the jtk row are required. Thus, one possible

implementation can have task i wait for the jgil row to be computed before the ijt, element

is computed. The basic algorithm is similar to the implementation of the column-Cholesky

in Ref. 9 and is as follows:

for task i
for j :a 1 to i-1 do

wait for jth row

8

AFWL-TR-89-01

Table 2. Speedup and efficiency for Example 2.

nP ww wa we E = wa/we S = Enp
1 0 168 168 1 1
2 44 168 212 84/106 84/53
3 126 168 294 84/147 84/49
4 224 168 392 84/196 84/49
5 322 168 490 84/245 84/49

for k :- 1 to j-1 do

a(i,j) := a(i,j) - a(i,k)*a(j,k);
end
a(ij) = a(i,j)/a(j,j);
a(i,i) = a(i,i) - a(ij)*a(ij);

end
a(i,i) = sqrt(a(i,i));

end

In order to create the scheduling chart for the Cholesky algorithm, assume that each additive

and multiplicative operation corresponds to one unit of work, while divide and square root

operations cost two work units each. Based on these assumptions, it takes 2j work units

to compute the jjh element of any row. Scheduling charts for implementations on 1 - 4

processors are shown in Fig. 3 with their respective speedup and efficiency (shown on the

right of each graph) computed using Eqs. 1 and 3. The scheduling charts do not take into

account communication delays or time required for task switching. Table 2 shows speedup

and efficiency computed with the alternate definitions. Once again, speedup and efficiency

statistics computed by the new definitions and the standard definitions coincide.

One can generalize the effects n and n. have on speedup and efficiency for the above imple-

mentation by deriving closed-form equations which estimate wa and ww. A computational

count shows that there are n3/3 - n/3 multiplications and additions and (r? + n)/2 divisions

and square roots. Thus the work accomplished is wa = (n3/3 + n2.+ 2n/3) computational

9

AFWL-TR-89-01

..

... Son,
.......

........

....

.**

..
..

....

.

..

U'

. . ..
... I

.3

..

.....................................

.....

..........................

0~~ ~ .

10

AFWL-TR-89-01

units (division and square root operations count for two operations each). This expression

is an exact measure of work accomplished based on our assumptions.

To derive a closed-form equation for the work wasted, however, is not so straightfoward.

The effect of problem and ensemble size on the waiting behavior of an implemention can be

somewhat difficult to measure. To estimate wasted work, a simulation based on the sam.e

assumptions made above concerning the cost of each operation was performed. Based on

the simulation, a statistical analysis showed that for n > 50, ww can be approximated bY

the expression

ww;:. [(38 + n/10)np + "7" - (nP - 1)

Figure 4a shows a graph of simulated work wasted, while Fig. 4b shows simulated speedup

and estimated speedup using the approximations of wa and ww. Based on these approxima-

tions, several observations can be made. First, as the size of the problem increases, speedup

increases for a given ensemble size. This is due to an increase in efficiency as problem size

increases. Second, as the number of processors increases, efficiency decreases for a given

problem size. Figures 5a and 5b are graphs of constant speedup and efficiency curves based

on our estimates of ww and wa. These curves show that a given speedup can be attained

from different combinations of problem and ensemble size.

As can be seen, the waiting behavior of an implementation can be determined analytically by

using closed-form expressions of the new fundamental parameters. However, in what follows,

the relationship between the new definitions and other more known definitions of speedup

and efficiency are explored.

11

AFWL..TR
89_01

WbotiWorkn=2

15=4

0

(b () Cholesky factorization
wain~ t~ * s. e tated work (ww)

4weeedup10

Le2n

AFWL-TR-89-01

20 20.

F 19
15- 5

Processors 10- 1N1-

k i i -=

5 5.

25 5b 7 100 125 150 175 200 25 50 75 100 125 150 175 200

Problem Size (n) Problem Size (n)

(a) Constant speedup curves. (b) Constant efficiency curves.

Figure 5. Constant speedup and efficiency curves.

13

AFWL-TR-89-01

3. Models of Parallel Performance

3.1 Two Views of Speedup

The parallel computing literature contains a number of different formulations of speedup and

efficiency based on the "serial" and "parallel" fractions of a given task. This section examines

two different points of view for modeling performance of a parallel system. From the first

perspective, the speedup is viewed in the context of the execution time of the serial task on

multiple processors. From the second perspective, the speedup is viewed in the context of

the execution time of the parallel task on a single processor.

The first point of view is expressed by Amdahl's law (Ref. 1) which states that if s is the

fraction of time spent on the serial portion of a task and p is the fraction of time spent on

portions of the task that can be executed in parallel (i.e., s + p = 1), then the time required

for a parallel system to execute the task is (9 + p/n.) * T(1). Based on these definitions of

. and p, and using Eq. 1, speedup can be expressed as

_(s+p)*T(1) s+p _ 1 (8)Sa-""'h= T(s+p/np)*T(1) s+P/flp/n = s+/p/np

where speedup has been normalized with respect to time. Figure 6a shows the effect s has

on speedup for a given number of processors. The Amdahl point of view is that the serial

portion of an algorithm bounds the maximum speedup that can be attained as processing

elements are added to the computation. Therefore, as n,, -- oo, the term p/np --+ 0, so

speedup is asymptotically bounded by 1/s. This formulation also implies that for a given

problem size, the maximum speedup attainable is not reached until an infinite number of

processors are used.

The second point of view was recently formulated by researchers at Sandia National Labo-

ratories. In Ref. 2, Amdahl's law is restated as follows: let . be the portion of time spent

14

AFWL-TR-89-01

1023z
1024 1024 - . . .,9733,x

506Z9
Speedup

I I,9l

0.00 0.01 0.02 0.03 0.04 0.0 0.06 0.00 0.01 0.02 0.03 0.04 0.05 0.06
s st

(a) Amdahl's Law (b) Sandia's reformulation.

Figure 6. Speedup given by Amdahl's Law and by Sandia's reformulation.

performing serial work on the parallel system executing the task, and let #i be the portion of

time spent performing parallel work on the parallel system (i.e., 4 + p' = 1). Then the time

required by a single processor to perform the task is (s + p'np) * T(np). Therefore, speedup

can be expressed as

S(.'dia W + p'np) * T(np) = s' + p'np = st + ' (9)
(s' + p') * T(nP) = s' + p'/

Figure 6b shows a sample graph of speedup as defined by Eq. 9 for Nr = 1024. The

apparent dichotomy between the two definitions of speedup is that Samdahl predicts modest

upper bounds on speedups for serial fractions in the range 0.01 - 0.04, while Snadia predicts

potential speedups of 10 to 40 times greater magnitude in the same range. Because both laws

are based on a common definition of speedup (Eq. 1), it is striking that the two formulations

are so distinct. However, if it is assumed that speedup definitions (Eqs. 6, 8, and 9)

are equivalent, the apparent dichotomy between the two points of view can be reconciled

by expressing the serial and parallel fractions in terms of the parameters ww, wa, uwe, and

the number of processors, n.. In particular, it follows that the two different formulations

of speedup can be considered equivalent, assuming the fractional entities are expressed in

terms of the work parameters and Nr. Equating Eqs. 6 and 8, one obtains:

15

AFWL-TR-89-01

1 wa
s+p/fnp wa +ww

wa +ww (i S
"-" nn s+q

wa n)
l + ww/wa = s(np) + 1-s

ww/wa = s(np -1)

= ww (1) (n _2) (10)

Therefore, s can be interpreted as the distribution across the additional processors of the

ratio of work wasted to work accomplished. Equating Eqs. 6 and 9, one obtains

P wa = s' +(1-s')np
wa + ww

= s'(1 - np) + np
wa 1

wa + ww

n p (- ww1) = sf(1 -np)
(wa
+, (-•1) =s'(1-nv)

ww

we np-i

Therefore, s' can be interpreted as a collective wasted effort, f ,*. where 9 is the distribution

across the additional processors of the ratio of work wasted to work expended. Notice that

both interpretations of s and s' are undefined for n. = 1. This reflects the fact that it

is inconsistent to consider serial and parallel portions of a task in a strictly serial context;

the fractions have meaning only in a parallel context. In addition, since ww and wa are

functions of n and nP, it follows that the parameters s, d, p, and p' are not only functions

of the problem size, but also functions of the number of processors used. Although this

assertion seems intuitively inconsistent with the a priori definitions of these parameters, it

is based on both theoretical considerations and empirical evidence.

16

AFWL-TR-89-01

e
r
a

- parallel -
P 5 I.. .. . ' '

-: + - + - -

P4I I I I I
P 3 . I.........

+ -+ -+-
P2 I I

WorkUnits-

Figure 7. Box diagram of Amdahl's serial and parallel fractions.

A useful diagram for understanding the meaning of s, d, p, p' can be developed as follows:

based on Amdahl's definitions of s, there exists a portion of an algorithm that must be

executed serially and another portion that can be executed in parallel. For five processors

the idealized work distribution may have the form shown in Fig. 7 where the shaded region

indicates wasted work. A more realistic distribution of work for a multiprocessor system is

depicted in Fig. 8a where, strictly speaking, there is no exclusively serial portion of work.

Assume, for purposes of illustration, that in a general parallel system with T, processors,

the wasted work throughout the total execution time is initially grouped on the last Nb - 1

processors during the time period 0 _< t < to = ww/(np - 1). Furthermore, suppose that the

total work, we, is expended over the time period 0 < t < tj = we/n,. We can now interpret

the parameters s, s', p, # in terms of relative areas of the new diagram, Fig. 8b. For example,

s is the ratio of the width of to to the length of the total white area, wa, while g is the ratio

of the width of to to the total width of the box, t1. Similar interpretations can be given for

p and #'. In addition, since the diagram is expressed in terms of ww,wa, and rN, one can

derive Eqs. 10 and 11 from geometric considerations. For example, since a = to/wa and

to = ww/(np - 1) then s = [ww/(np - 1)]/wa which is the same interpretation of s given by

Eq. 10. The parameters s', p, and p' can be derived similarly. These graphical representations

of tasks provide insight about the properties of s, Y, p, and #. In this parallel framework

these parameters have real meaning. Amdahl's s parameter has an averaging effect in that

17

AFWL-TR-89-01

- tl - _

- to .. -- to -

p P5 I I I ww = . P5 : I IR -÷ + ,-+ -÷- ii-÷ - + - + -
0 P4 I I I -- P4 IC I - +.-.+'-' a +•

P 3 3liP3 I I Iiiiiiiiiiil ne P 3 . 1i~l~~iiii I I I p
S + we +

P2 1 +: -. •:: : :• ÷ + -iii~ii:iiiii t ,,, (
,PI P I I I I

WorkUnits we/n, WorkUnits

(a) Distribution of wasted work. (b) Wasted work redistributed.

Figure 8. Realistic distribution of serial and parallel fractions.

it represents the portion of work which would have to be done 100 percent serially so that

a portion p of the work could theoretically be performed with all processors working at 100

percent efficiency. Generally, as the number of processors is increased, work wasted changes

and the fractions s and p change.

3.2 Basic Laws

Using the expressions for s and 8' found in Section 3.1, several fundamental laws can be

derived which illustrate the relationships between the respective serial and parallel fractions.

For convenience, let a = wa/we = E and let w = ww/we. Then Eqs. 10 and 11 can be

written in the following form:

s = (w/a)(1/np,- 1) (n, > 2) (12)

s' - wfn,/(n,- 1)] (n, 2> 2) (13)

Using these equations, the following fundamental laws can be derived:

Speedup= 3'/s if ww > 0 Efficiency fw >0 (14)
nP ifww=0 1 ifww 0

18

AFWL-TR-89-01

Proof: Using Eqs. 12 and 13, one obtains

$' wn, a(np- 1)S= * = anp -- E np = S.
s n,- 1 w

Using the definitions of p and p', Eq. 11, and the fact that E = 1 - w, one derives

p= 1-S1

= 1-w n.
np- 1)

= 1-w)-

=~~1 (1 W) [1 101)

= E-Es

= E(1-s)

p = Ep

The basic law says that the serial fractions of a task, which have been used to define speedup,

are related precisely by that speedup! The law also states that the parallel fractions of a

task which have been used in defining speedup are related precisely by the efficiency of the

parallel systemn. Also, since E < 1 and S _ n1,, the above proof establishes the following

inequalities:

s' < snp (15)

p' <p (16)

"The basic laws can also be derived by expressing a and d in terms of S in Eqs. 8 and 9 and taking tile
corresponding ratios.

19

AFWL-TR-89-01

The preceding work leads to a more unified view of speedup and important reinterpretations

of the parameters affecting the parallel performance of algorithms. The unified view of

speedup is provided as follows: if the expressions for s and d are substituted in Eqs. 8

and 9, respectively, the formulations of speedup in Ref. 1 and Ref. 2 coincide with the new

definition of speedup. In addition, using the basic law, the two speedup graphs shown in

Fig. 6 can be correlated. For purposes of illustration, assume speedup is a linear function

of s' : S = -ms' + b, as proposed in Ref. 2. Substituting d = sS and rearranging terms.

one establishes that speedup is a hyperbolic function of s : S = b/(1 + ms), as proposed in

Amdahl's formulation of speedup. Therefore, the apparent dichotomy between the different

formulations of speedup is resolved. In addition, the relationships between s and A are easily

derived from Eqs. 8, 9, and 14.

a' - 8 (17)
s + (1 -)/np

a(18)
s' + (1 -s)nP

In order for the different formulations of speedup to remain consistent, it is necessary to

treat the serial and parallel fraction parameters as dynamic entities with respect to i?, If

one insists on viewing these fractions as constants for a given problem size, the formulations

of speedup found in Ref. 1 and Ref. 2 only describe the limiting behavior of a general

parallel system. Therefore, from this point on, the parameters s, 1, p, and p' will be treated

as variables which depend on n and ni.

3.3 Dynamics of s,p,s' and p'

This section illustrates the behavior of s and d with respect to n, and i,,. These observations

will support the assumptions made in the models of parallel performance presented in Sections

20

AFWL-TR-89-01

Table 3. Dynamics of fundamental parameters - Example 1.

nL s $I S = s'/s p p' E = p'/p
2 0.333 0.500 1.52 0.667 0.500 0.750
3 0.167 0.375 2.25 0.833 0.625 0.750
4 0.259 0.583 2.25 0.741 0.417 0.563
M 0.306 0.688 2.25 0.694 0.313 0.450 1

Table 4. Dynamics of fundamental parameters - Example 2.

nP s St S = s'/s p p' E = p'/p

2 0.262 0.415 1.585 0.738 0.585 0.792
3 0.375 0.643 1.714 0.625 0.357 0.571
4 0.444 0.762 1.714 0.556 0.238 0.429
5 0.479 0.821 1.714 0.521 0.179 0.343

3.4 and 3.5. Tables 3 and 4 show sample values of the serial and parallel fractions as expressed

by Eqs. 10 and 11 for the examples presented in subsections 2.2.1 and 2.2.2 and shows the

computation of speedup and efficiency based on the basic law expressed in Eq. 14.

Notice that even though the maximum value of speedup is attained, the values of s and 4

(and therefore p and p') continue to change as n% increases. This occurs because the work

wasted increases as N increases. A straightfoward analysis of example 1 shows that for

np ý_ 3, ww = 4np - 9 and we = (4np - 9) + wa = 4np. Therefore, s = (4n%/9 - 1)/(np - 1)

and s' = (np - 9/4)/(np - 1) for %p _! 3. It follows that

lim s = 4/9 = 1/MazSpeedup
np--oo

and

lim .s = 1np-oo

21

AFWL-TR-89-01

0.5-

0.4- o_ _2

* n=30
0.3- o =40

SfW iRaeft (s)
0.2-

0.1

a&u,* of lcmacssvu

Figure 9. Serial Fraction, a, as a Function of rn,.

Based on the simulation described in subsection 2.2.2, the graphs in Fig. 9 of the s(n, 'i)

curves were obtained. These curves illustrate the following facts about the simulation of

the Cholesky algorithm. First, as problem size increases, respective s values decrease (fixed

np). Second, as the number of processors increases, the s values increase (fixed n). Third,

the points of inflection of the curves correspond to the number of processors at which the

maximum speedup is attained. This behavior is also shown by the tables found in the

appendix, which were computed from the timing data found in Ref. 2 and Ref. 3 for certain

parallel numerical algorithms implemented on a 1024-node hypercube.

3.4 An Idealized Model of Parallel Performance

The preceding theoretical and empirical examples suggest certain characteristic behavior of

the parameters a, p, s', and g. For example, for a fixed number of processors n., as the

problem size increases, Tables 3, 4, and those in the appendix show that 8 decreases and S

increases. Also, for a fixed n, as rp increases, the tables seem to show that .4 approaches 1.

Finally, for a given n, the tables seem to indicate that the values of s fluctuate until a certain

np is reached, at which point s begins to increase to an asymptotic limit. These observations,

22

AFWL-TR-89-01

in connection with the laws presented in Section 3.2, form the basis for the model of the

performance of parallel algorithms that will be presented in the next section. However, before

presenting the model, the limiting or asymptotic behavior of the fundamental parameters

will be discussed.

T.he effect of scheduling tasks to processors can be thought of as follows: as processors are

added to the computation, the original serial task is partitioned into smaller and smaller

independent portions while preserving the inherently sequential portions of the algorithm.

There is a point where further partitioning is not possible without conflicting with the

inherent dependencies. Thus, it is useful to base the discussion of asymptotic behavior on

the fundamental assumption that there is a largest portion of a task, h, which is indivisible

(in the parallel sense)'. For instance, in Example 2.2.1, h is the ratio of the depth of the

dependency graph (d) and the total number of atomic tasks (nodes in the graph) (A), so

h = d/A = 4/9. A so-called "embarrasingly parallel" or purely parallel algorithm may have

d = 1, the time required to execute a single computation or instruction. In terms of the

box diagrams used in Section 3.1, the width of a box will never be less than d work units.

restricting any further speedup. Pursuing this analogy, in an optimum implementation where

d has been reached, the work expended is we = dnp and the work accomplished is wa = A.

Therefore, ww = we - wa = dnp - A. Using Eq. 10, the "idealized" s, denoted S, is

dnp-A (a1
A \n;-1J

d/An, - 1
np - 1

i hnp - 1 = 1 - h (9h- z -1 h - (19)

np - I np- I

The preceding formulation is valid only when the number of processors used equals or exceeds

the breadth of the dependency graph, or when the number of processors needed to attain

"This fraction is conceptually different from Amdahl's s in that it represents a portion of work that can
be executed in parallel with other tasks. It represents work that must be performed sequentially, not scrially.

23

AFWL-TR-89-01

the maximum speedup is reached. This reflects the fact that S models only the asymptotic

behavior of s. The precise relationship between s and A is obtained by using Eq. 8 and

writing s in terms of speedup: s = [(np/S) - 1]/(np - 1). Then

1_ n np
s-[= [1 - (hn- 1)] h)

S= S+ nPh (0
Once the maximum speedup is obtained for a given implementation, S = A/d = 1/h. It

follows from Eq. 20 that s = A, so

lim s= lim S =h (21)

Based on Eq. 21, the limiting behavior of s actually defines a number which can be inter-

preted as the largest irreducible fraction of a task that must be executed in a sequential

(not serial) fashion. Furthermore, based on the assumption that lin-n.-oo s = s. exists, the

following results can be established:

1
(i) lim S=- (ii) lim s'= 1 (22)

np-.oo so np-oo

To establish (i), based on Eq. 8,

1-j-sj = Is+(1-a/np)-aI 23

= (1 - s)l/n < 1I/n,

Therefore, 1/S - s --+ 0 as n. --+ oo. To establish (ii), by Eq. 14,

S' = Ss, so

lim 3' = lim S* lim s=(1/s"0),*s'=1np-4ox np-.0 np_-0

24

AFWL-TR-89-01

One can also derive "idealized" versions of i, p, and p' using the preceding type of reasoning.

For example, using Eqs. 9 and 11 one derives 3 = (sc,,np - 1)/s,,c,(n. - 1), so that S = g'/; =

11sa,, (for sufficiently large n.). These idealized versions of the basic parameters constitute

an asymptotic model of parallel performance. As indicated by Eqs. 19 and 20, the actual

versions of the parameters differ from the parameters in the asymptotic model by error terms

Which approach zero as n. --+ oc (provided limn.-oo s = s., exists).

The model predicts that for a given problem size, even though s is changing with rN, it

asymptotically approaches a maximum which in turn determines the speedup that can be

attained. This is in accordance with Amdahl's law. However, the model also says that

unless these fundamental parameters are treated as dynamic entities, Amdahl's formulation

of speedup is only correct for np = 0o. The argument can be made that, for the a priori

definitions of the fundamental parameters (i.e., s, p, etc.), the formulations of speedup

expressed in Ref. 1 and Ref. 2 are correct. However, the definitions place the overly restrictive

assumption that work represented by p is equally partitioned among all processors. If.

however, the new interpretations presented herein are given to the fundamental parameters,

they can serve as parameters in a general model of parallel performance.

3.5 General Model of Parallel Performance

This section presents a group of assumptions and their consequences abouL the fundamental

parameters which collectively represent a dynamic model of parallel performance. There is

one primary assumption, Al, and two secondary assumptions, A and a2.

(Al) The definitions of speedup and efficiency presented in this paper are equivalent. That

is, speedup and efficiency are absolute, not relative entities.

A partial justification for this assumption comes from the observation that each of the three

definitions of speedup (Eqs. 6, 8, and 9) was motivated by the original concept of speedup as

25

AFWL-TR-89-01

the ratio of the execution times required to perform the task in serial and parallel modes (Eq.

1). The reconciliation of the different views of speedup based on (Al) led to the following

consequences (Eqs. 10, 11, and 14):

(Cl) s = (ww/wa) (.I-_) I': (,,/,,) (n,)

(C2) Speedup = {'/ if WW>0 Efficiency = P'/P if WW>0

nP if ww = 0 1 if ww = 0

The empirical and theoretical evidence presented in Section 3.3 suggests possible behxior for

the parameters s and s' that will be incorporated into the model as the following secondary

assumptions:

(a,) s is an increasing function of np (for constant problem size n and nr sufficiently large).

(a 2) s is a decreasing function of n (for a constant number of processors n. and sufficiently

large n).

Using reasoning similar to the type presented in Section 3.1, one can show that (Al) and

(a,) imply the following consequences:

(C3) lim s = soo exists and lim S = 1/s4.np 00 np..0

(C4) s' is an increasing function of nP and limnnn.... a 1.

(C5) E is a decreasing function of nP and limn,-. E = 0.

Since s is an increasing function of n, and s : 1, (C3) follows. To establish (C4), by Eq. 17

one can write

I1 1

1+ (I/s- 1) *(/np) 1 +r

26

AFWL-TR-89-01

1.0- - - - --- ---

I I

1.0

Figure 10. Relationship between s and .4; np = 10.

By (a,), as np increases, s increases, so (1/s - 1) decreases. Since 1/N also decreases, r de-

creases so s' increases. By (C3), so, exists and is nonzero, so limnp-oo r = 0 =! limnp-o s'

1, which establishes (C4). To establish (C5), write the definition of efficiency in the form

E=S = 1 1

By (a,), as np increases, s increases, so s(np-1)+1 increases, which implies that E decreases.

By (C3), s., exists and is nonzero, so limnp..oo E = 0.

Assumption (a2) involves the parameter n which is not explicit in any of the expressions that

have been presented. However, assuming a constant number of processors, one can state a

basic relationship between . and s that can be used to derive consequences of (a2). As

previously noted, one can write s' in the following form:

IS S

St =. 8s(1 - 1/np) + 1/nP As + B

where A = I - I/np and B = I/np. Viewing s and s' as real variables in the range (0, 1).

one computes ds'/ds = B/(As + B)2 > 0 and d2s'/d$2 - -2AB/(As + B)3 < 0. Then one

27

AFWL-TR-89-01

obtains the graphical representation of the relationship between s and g found in Fig. 10

where the average slope of the graph at a particular s represents speedup. Using Fig. 10

and (a2), one can derive the following consequences (for simplicity the parenthetical remarks

stated in (a2) are omitted).

(C6) s' is a decreasing function of n.

(C7) S and E are increasing functions of n.

Since ds'/ds > 0, it follows from (a2) that (C6) holds. Furthermore, since S is the average

slope of a concave downward graph (als'/dS2 < 0), it follows that as s decreases, S increases.

Therefore, by (a2), as n increases, S also increases. Since E = S/n, and np is fixed, it follows

that E increases as n increases, so (C7) is established.

The assumptions and consequences presented above can be interpreted in terms of graphical

diagrams like the ones presented in Subsection 2.2.2. This interpretation provides an intuitive

explanation of the model in terms of the behavior of the work quantities wa, ww, and we.

As usual, in Fig. 11, the shaded area represents work wasted, ww, and the white areas

represent the work accomplished, wa. Diagram 1 illustrates the model for increasing r?

and diagram 2 illustrates the model for increasing n. For sample interpretations, note in

diagram 1 that the ratio of the width of the shaded area, ww/(np - 1), to the total area, we.

is increasing and approaches 1 as np increases. This is equivalent to saying that g increases

and approaches 1 as N increases. Similarly, one can see that, as n, increases the efficiency,

which is the ratio of the white area to the total area, we is decreasing and approaching 0.

On the other hand, based on diagram 2, one sees that d (which is the ratio of the width of

the shaded area to the total area) decreases as n increases, while the efficiency increases.

In conclusion, the dynamics of the fundamental parameters can be shown to provide a type

of summary of the behavior of the parallel algorithm. Figure 12 contains the (approximate)

level curves for the S, E, a, and s' parameters for the Cholesky algorithm implementation

28

AFWL-TR-89-01

Diagrain One Fixed Problem Size i

+ ~~~- +" +- 7+ +++- +-- +• --+

I *:+ : iI 0 * , + "-+ -+ +, -
+ -*- + -

•- +-*--,i,+.,+-+-+-I+ -_-. •.+
-÷-1 -1 1 1 1 1-1-÷ - ÷-÷ ÷ -- - -I- -

1 1 1 1 1 I *I• I I | I I I

Increasing Number or Pmrocssors

Diagraim T~o : Fixed Number or Processors

Si) ! I II

Figure 11. Boxed representations of parallel tasks.

29

- ~ ~ 29

AFWL-TR-89-01

20 20-E .E --. 7

E =.6 E=.8

15 10

Number ISI
of _0-- ------------------ 10.

Processors 10
(np)

5 5

0 p I I 0!

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Problem Size (n) Problem Size (n)

(a) Constant speedup curves. (b) Constant efficiency curves.

10 - .088,=.05 u,= .04; 25- 1
1

..
03

a.0t
N u m b e r I 0 0 3"

Of s'.05
of,0

Processors I I
(np) s .04

.03

002

0I
50 100 50 100

Problem Size (n) Problem Size (n)

(c) Constant s curves. (d) Constant s' curves.

Figure 12. Level curves for S, E, s, and d.

30

AFWL-TR-89-01

discussed in Section 3. Figure 12b shows that constant efficiency can be maintained by a

linear choice of pairs (n, np) as n, np --+ o. This choice of pairs will result in increasingly

larger speedups, since each efficiency curve intersects the hyperbolic speedup curves in in-

finitely many points. Moreover, in Fig. 12a each line representing a constant value of rý is a

horizontal asymptote for the speedup curve given by S = np. Similarly, in Fig. 12c the lines

representing constant n values are vertical asymptotes for the constant j curves and constant

speedup curves. In Fig. 12d, a constant g is also maintained by a linear combination of n

and nP. This statement is consistent with the findings reported in Ref. 2 that a constant bi

value (and hence a linear speedup) can be obtained for certain problems by allowing n to

increase linearly with np. Finally, the similarity of the level curves in Fig. 12b and 12d can

be explained by noting that, as the number of processors increases, the difference between

the efficiency E and the parallel fraction p' approaches zero [limnP-OO(E - p') = 01.

31

AFWL-TR-89-01

4. Conclusions

The widespread practice of measuring parallel performance solely in terms of constant entities

s, p, independent of n and rn, leads to a weak model which has very little predictive or

descriptive value. Historically, this practice originated in the framework of vector processing,

where the vectorizable portion of a loop constitutes a portion of work that can be executed

with 100 percent efficiency, while the unvectorized portion constitutes work that must be

performed serially (one operation at a time). This same reasoning, however, does not apply

to parallel processing since, in general, tasks are composed of streams of operations. In

this context, it is the sequential nature of the operations in a given stream that bounds

the speedup attainable by an algorithm. Because independent streams may have different

lengths, partitioning these for parallel execution is not as simple as dividing them equally

among available processors (i.e., p/nj). The incongruent packing of these streams yields idle

periods which contribute to the inefficiency of the system and result in the waiting behavior

which characterizes the algorithm's performance.

Therefore, the work parameters ww, wa, and we introduced in this report are useful because

they provide a natural means for interpreting the performance of a parallel algorithm for

various problem and ensemble sizes in terms of its waiting behavior. These parameters also

provide a connecting link between the overly simplistic "serial" and "parallel" fraction pa-

rameters and the very detailed timing statistics obtained empirically. Moreover, using these

parameters to describe the equivalence of the alternate formulations of speedup introduces a

new dynamic view of the "serial" and "parallel" fractions as variables depending on n and ri.

This new point of view permits the formulation of more sophisticated parallel performance

models which accurately reflect both theoretical results and empirical observations.

32

AFWL-TR-89-01

4.1 Future Research

Plans for future work include three aspects. The first aspect involves the use of the new

speedup and efficiency definitions to characterize parallel algorithms. The second aspect

involves extending the formulations of speedup by introducing time as a variable and by

replacing the "serial" and "parallel" fraction pairs (s, p) or (., p) with probability distribu-

tions based on the number of processors. The third aspect involves extending the models

to include properties of scaled speedup. The second aspect will permit the fundamental

parameters to be treated from a statistical point of view. The concept of scaled speedup

(introduced in Ref. 2 and Ref. 3) is important because of its connection to the behavior of

speedup on various curves in the (np, n) plane.

33

AFWL-TR-89-01

References

1. Amdahl, G. M., "Validity of the Single-Processor Approach to Achieving Large Scale
Computing Capabilities," AFIPS Conference Proceedings, Reston, Va., April 1967.

2. Gustafson, John L., Montry, Gary R., and Benner, Robert E., "Development of Parallel
Methods for a 1024-Processor Hypercube," SIAM Journal on Scientific and Statistical
Computing, 9(4), July 1988.

3. Womble, D. E., Allen, R. C., and Baca, L. S., "Invariant Embedding and the Metho(d
of Lines for Parallel Computers," Sandia National Laboratories, Albuquerque, N.M.
87185. Internal Report.

4. Fox, Geoffrey and Otto, Steve W., "Concurrent Computation and the Theory of Com-
plex Systems," Heath, Michael T., editor, Hypercube Multiprocessors, 1986, pages 24-1-
268, SIAM, 1986.

5. Forsythe, George and Moler, Cleve, Computer Solution of Linear Algebraic Systems.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1967.

6. Franklin, Joel N., Matrix Theory, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
1968.

7. Cosnard, M., Marrakchi, M., and Robert, Y., "Parallel Gaussian Elimination on an
MIMD Computer," Parallel Computing, 6(3), March 1988.

8. Dongarra, J. J., Gustafson, F. G., and Karp, A., "Implementing Linear Algebra Algo-
rithms for Dense Matrices on a Vector Pipeline Machine," SIAM Review, 26(1), January
1984.

9. George, Alan, Heath, Michael, and Liu, Joseph, "Parallel Cholesky Factorization on
a Shared Memory Multiprocessor," Linear Algebra and Its Applications, 77:165-187.
1986.

34

AFWL-TR-89-01

Appendix A. Dynamics of Fundamental Parameters

The following tables illustrate the behavior of the fundamental parameters for various prob-

lem sizes and ensemble sizes. They were computed based on tables from several sources as

specified in the table captions.

35

AFWL-TR-89-01

Table A.1. Speedup, s, and s - Example 1. Table compiled on the
basis of Table 2, Section 5.5, p. 14 in Ref. 2.

Number Of Processors
Problem Size 4 16 64 256 1024

Speedup
9 x 212 3.98 15.86 62.00 226.395 639
9 x 210 3.96 15.52 57.036 167.225
9 x 2r 3.87 14.32 44.3
9 x 26 3.60 11.07
9x24 2.96

s Values
9 x 212 0.00115 0.0006 0.00051 0.00052 0.00059
9 x 210 0.00301 0.0020 0.00194 0.00208
9 x 28 0.01067 0.0077 0.00759
9 x 2e 0.03663 0.02967
9 x 24 0.11708

s' Values
9 x 212 0.00457 0.00946 0.03161 0.11688 0.37634
9 x 210 0.01192 0.03201 0.11034 0.34814
9 x 26 0.04136 0.11163 0.32876
9 x 26 0.13201 0.32852
9 x 24 0.34659

36

AFWL-TR-89-01

Table A.2. Speedup, s, and d - Example 2. Table compiled on the
basis of Table 5, Section 6.5, p. 23 in Ref. 2.

Number Of Processors
Problem Size 4 16 64 256 1024

Speedup
2 x 212 3.959 15.473 58.534 201.630 319.150
2 x 2'0 3.908 14.812 51.260 132.259
2 x 2' 3.780 13.136 34.091
2 x 26 3.472 8.990
2 x 24 2.578

a Values
2 x 212 0.00341 0.00227 0.00148 0.00106 0.00093
2 x 210 0.00781 0.00535 0.00395 0.00367
2 x 2s 0.01942 0.01454 0.01393
2 x 26 0.05069 0.05198
2 x 24 0.18384

a' Values
2 x 212 0.01352 0.03512 0.08676 0.21322 0.49350
2 x 210 0.03053 0.07920 0.20223 0.48426
2 x 2s 0.07339 0.19095 0.47475
2 x 26 0.17600 0.46731
2 x 24 0.47396

37

AFWL-TR-89-01

Table A.3. Speedup, s, and d' - Example 3. Table compiled on the
basis of Table 8, p. 29 in Ref. 2.

Number Of Processors
Problem Size 4 16 64 256 1024

Speedup
2 x 211 3.954 15.462 57.464 177.491 351.241
2 x 29 3.925 14.781 47.182 98.542
2 x 27 3.805 12.599 28.088
2 x 21 3.437 8.182
2 x 23 2.561

s Values
2 x 211 0.00387 0.00232 0.00181 0.00173 0.00187
2 x 29 0.00634 0.00550 0.00566 0.00627
2 x 2' 0.01710 0.01800 0.02029
2 x 2V 0.05460 0.06370
2 x 23 0.18730

3' Values
2 x 211 0.01529 0.03588 0.10375 0.30788 0.65763
2 x 29 0.02490 0.06123 0.26695 0.61748
2 x 27 0.06507 0.22674 0.57003
2 x 2- 0.18765 0.52121
2 x 23 0.47967

38

AFWL-TR-89-01

Table A.4. Speedup, s, and .4 - Example 4. Table compiled on the
basis of Table 1, p. 8, Example 1 in Ref. 3.

Number Of Processors
Problem Size 4 16 64 256 1024

Speedup
2 x 212 2.606 10.007 32.468 61.040 64.936
2 x 210 2.580 8.849 19.513 21.139
2 x 2V 2.468 6.129 7.600
2 x 26 2.087 2.824
2 x 24 1.333

a Values
2 x 212 0.17824 0.03993 0.01542 0.01233 0.01444
2 x 210 0.18353 0.05388 0.03619 0.04357
2 x 2s 0.20702 0.10737 0.11779
2 x 28 0.30556 0.31111
2 x 24 0.66667

s' Values

2 x 212 0.46456 0.39956 0.50051 0.76455 0.93750
2 x 210 0.47365 0.47674 0.70615 0.92102
2 x 28 0.51082 0.65806 0.89524
2 x 26 0.63768 0.87843
2 x 24 0.88889

39

AFWL-TR-89-01

Table A.5. Speedup, s, and s' - Example 5. Table compiled on the
basis of Table 1, p. 8, Example 2 in Ref. 3.

Number Of Processors
Problem Size 4 16 64 256 1024

Speedup
2 x 212 3.940 15.128 49.085 92.280 98.170
2 x 210 3.902 13.384 29.513 31.972
2 x 2e 3.727 9.258 11.480
2 x 26 3.130 4.235
2 x 24 2.111

a Values
2 x 212 0.00506 0.00384 0.00482 0.00696 0.00922
2 x 210 0.00840 0.01303 0.01855 0.02748
2 x 2' 0.02439 0.04855 0.07262
2 x 26 0.09259 0.18519
2 x 24 0.29825

s' Values
2 x 2 12 0.01993 0.05814 0.23674 0.64204 0.90501
2 x 2'0 0.03227 0.17447 0.54742 0.87854
2 x 2V 0.09091 0.44946 0.83365
2 x 26 0.28986 0.78631
2 x 24 0.62963

40

